

DARKER SKY Mid-term event

Monitoring effects of light pollution on biodiversity (14:45-15:00) Focus on Brest's demonstrator sites

Enora MORIN

DARKER SKY Project manager at University of Brest (UBO) © Le Télégramme Saïg POTARD

Head of Public Lighting Department at Brest Métropole

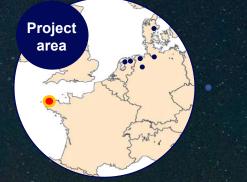
Brest Métropole, acting on light pollution as a public authority

Population : 213 400 inhabitants

Lighting points : 36420

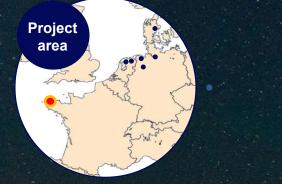
Since 2021, a new lighting strategy: the Nocturnal Ambience Coherence Scheme (N.A.C.S.), a strategy in 3 steps :

- 1. Diagnosis
- 2. Territorialisation
- 3. Strategy of lighting evolution


An evolving strategy, from a top-down method, to a bottom-up method

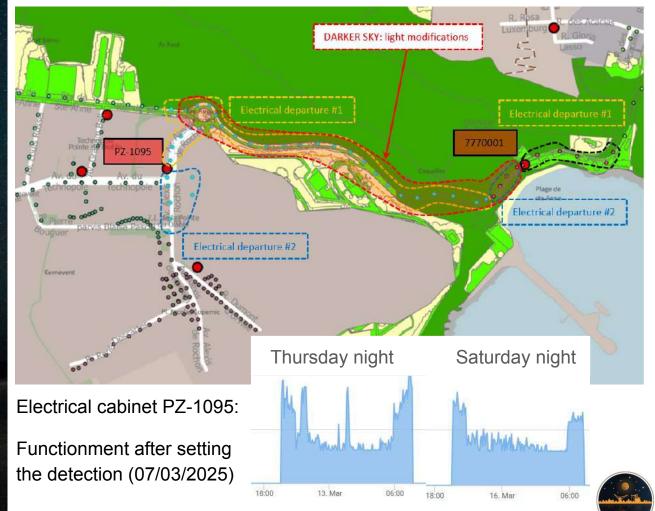
Interactive map examples :

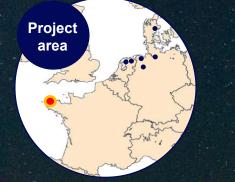
- 1. Mobility issues
- 2. Biodiversity issues
- Street lighting operating modes: dimming and switching off



Demonstrator site n°1 Saint-Anne Valley, Brest, France

Modifications including: Lower temperature of color Presence detection during night : pedestrian and vehicles Switch-off from 01:00 to 05:30 (programming change in progress)





Demonstrator site n°1 Sainte-Anne Valley, Brest, France

Modifications including: Lower temperature of color Presence detection during night : pedestrian and vehicles Switch-off from 01:00 to 05:30 (programming change in progress)

Demonstrator site n°2 Moulin Blanc beach, Brest, France

Modifications including: Decrease in support height Better photometry of luminaires (light distribution) Change of color temperature lanterns Detection of users Partial switch-off : 22:30-06:00

Programming change in progress

Demonstrator site n°2 Moulin Blanc beach, Brest, France

Modifications including: Decrease in support height Better photometry of luminaires (light distribution) Change of color temperature lanterns Detection of users Partial switch-off : 22:30-06:00 Programming change in progress

Total installed lighting flux

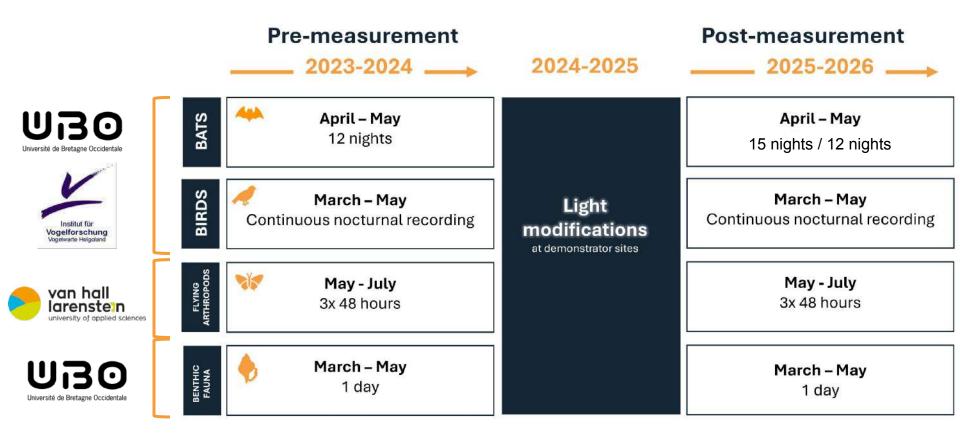
Before light works:

TOTAL : 521 800 lm in maximum illumination

After light changes:

TOTAL : 187 400 lm in maximum illumination

Illuminance study for a lighting better adapted to the needs of users



Evaluation Process

Objective of ecological monitoring:

Understand what species live at our demonstrator sites, their nocturnal activity and compare two types of lighting.

Evaluation Process: Ecological monitoring

Evaluation Process: Ecological monitoring

Main steps of ecological monitoring

Placement of recorders at Sainte-Anne demo site

Bats monitoring at Sainte-Anne Valley

Results for 2024 monitoring (pre-light modifications)

Monitoring implemented

6 audiomoths (inc. 3 control)

Bats species identified

12 identified species

(10 in all points)

Myotis daubentonii

Barbastella barbastellus

Pipistrellus pygmaeus (1 point)

Eptesicus serotinus

Plecotus auritus (3 points)

Nyctalus leisleri

Rhinolophus ferrumequinum)

Nyctalus noctula

Pipistrellus kuhlii

Pipistrellus nathusii

Pipistrellus pipistrellus

Birds monitoring at Sainte-Anne Valley

Results for 2024 monitoring (pre-light modifications)

Monitoring implemented

2 song-meters (inc. 1 control)

For each recorder:

- ~ 7000 recordings
- ~ 1150 hours of recording

Birds species identified

Turdus merula

Black bird

Phyll

Phylloscopus collybita Common Chiffchaff

11

Erithacus rubecula European Robin

- Evaluation of diversity (Sound analysis)
- Focus on 3 sensitive species :
 - acoustic activity (abundance)
 - phenology

Diurnal birds singing at night > Potential ALAN effects

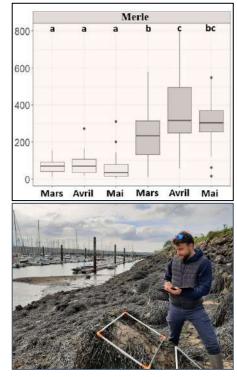
Flying arthropodes monitoring at Sainte-Anne Valley Results for 2024 monitoring (pre-light modifications)

Monitoring implemented

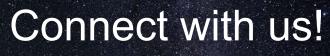
14 sticky traps (inc. 7 controls)

Analysis through abundance

Before modifications : No main difference in size, total and nearly all order abundance between control and treatment zone


Ecological monitoring Next steps

Next steps:


- Analysis of 2024 & 2025 data for comparison between sites and methods used for replication at transnational level.
- See if different types of light modifications has an impact on biodiversity
 Experimental so lighting changes might not have an effect!

Final objective:

- Creation of a monitoring guide after testing and approving of methodology for biodiversity monitoring for LP.
- •Bring findings to a transnational level to better accompany municipalities/ports wanting to implement new lighting solutions.

Interreg **North Sea**

Co-funded by the European Union

DARKER SKY

Enora Morin, Project Manager UIBO Université de Bretagne Occidentale enora.morin@univ-brest.fr

Saïg Potard, Head of lighting department C Brest Métropole saig.potard@brest-metropole.fr

Yoann Roulet, PhD student Université de Bretagne yoann.roulet@univ-brest.fr Occidentale

Other contributors to the ecological monitoring in Brest: Thomas BUREL, Lucas COSSARD, Xavier DAUVERGNE, Sébastien GALLET, Charlie SIMON.

